Monitoring the International Land Borders of the United States Using High Resolution Imagery

Lloyd L. Coulter & Douglas A. Stow Dept. of Geography San Diego State University

Smuggling of People and Contraband Into the United States

- 1) Ports of Entry
- 2) Air
- 3) Over land
- 4) Under Ground

Smuggling of People and Contraband Into the United States

- 1) Ports of Entry
- 2) Air
- 3) Over Land
 - trails
 - roads
 - disturbance
- 4) Under Ground

Smuggling of People and Contraband Into the United States

- 1) Ports of Entry
- 2) Air
- 3) Over Land
- 4) Under Ground
 - spoil piles
 - land cover disturbance
 - new construction

Image-based Monitoring of the U.S. Land Borders

- May be performed using a variety of imagery to:
 - Monitor land cover changes
 - Detect active smuggling routes & infrastructure
 - Improve Border Patrol posture and interdiction success

Commercial Airborne Multispectral Digital Image (0.2 to 1 m)

USGS Color Infrared Digital Ortho-photograph (1 m)

Commercial Satellite Image (0.5 to 4 m)

Large Format Digital Imaging Systems & U.S. Land Border Imagery Collection

NGA, USGS, USBP 2008/2009 Imagery

- Nationwide land borders
 - 30 miles into US
 - 10 miles into Mexico/Canada
- 1 ft spatial resolution
 - 6" for ports of entry
- 3-band true color (RGB)
- Separate near-infrared (NIR) band
- Currently collecting/processing
- 3001, Inc. leading effort, many subs
 - DMC and ADS40 systems

Imagery will be publicly available and provides an excellent baseline for detecting future changes

NGA - U.S. Land Border Imagery Collection

U.S. Border Imagery Collection – DMC Simulated Imagery

Repeat Imaging & Change Detection

Traditional Large Format Systems

Low-cost Platform/Sensor Combinations

Light Sport Aircraft (LSA) – Medium Format Imagery

~ 5–60 cm

10 - 1000 km²

Unpiloted Aerial Vehicle (UAV) – Small Format Imagery

Spatial Coverage 0.1 - 10 km²

Spatial Co-registration of Multitemporal Imagery

Accurate Spatial Co-registration Requires

- accurate absolute positioning (Coulter and Stow, 2008)
 - GPS/IMU
 - survey control
 - terrain (LIDAR), stereo imagery, etc.

or

- accurate relative positioning
 - Frame Center Matching approach (Coulter et al., 2003)

Image Preprocessing for Detailed Change Detection Multitemporal Co-registration of ADS40, DMC, and UltraCam Imagery

Coulter, L. and D. Stow. 2008. Assessment of the Spatial Co-registration of Multitemporal Imagery from Large Format Digital Cameras in the Context of Detailed Change Detection. Sensors 2008, 8, 2161-2171

Image Preprocessing for Detailed Change Detection Radiometric Normalization: Histogram Matching

Yuan, D., & Elvidge, C. (1996). Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51, 117–126.

Mean-Standard Deviation Normalization

Radiometric Normalization: Histogram Matching

Radiometric Normalization: Window-based

Window-based radiometric normalization:

- 1. create difference image,
- 2. apply low pass filter to difference image
 - smooths to identify local trends
 - 99x99 window, every 11th row/column
- 3. subtract local trends from the original difference image (or Time-2 image).

Radiometric Normalization: Window-based

Detectable Land Cover Changes – Tecate, CA, USA

Land-based Smuggling

Trails, lay-up sites, dirt roads

- new
- increased use
- decreased use
- no change

Detectable Land Cover Changes – Tecate, CA, USA

Land-based Smuggling

Trails, lay-up sites, dirt roads

- new
- increased use
- decreased use
- no change

Detectable Land Cover Changes – Tecate, CA, USA

Land-based Smuggling

Trails, lay-up sites, dirt roads

- new
- increased use
- decreased use
- no change

Imagery Collection – Tecate - October 27, 2008

NEOS GT500 "Mosquito"

Tunnel-based Smuggling

Buildings, Spoil Piles

- new
- modified

2008 NEOS

Tunnel-based Smuggling

Buildings, Spoil Piles

- new
- modified

Potential Spoil Piles

New Structure

Tunnel-based Smuggling

Buildings, Spoil Piles

- new
- modified

Tunnel-based Smuggling

Buildings, Spoil Piles

- new
- modified

Tunnel-based Smuggling

Buildings, Spoil Piles

- new
- modified

Tunnel-based Smuggling

Buildings, Spoil Piles

- new
- modified

Tunnel-based Smuggling

Buildings, Spoil Piles

- new
- modified

Semi-automated Change Detection – New Buildings

Semi-automated Change Detection – New Trails

Conclusions

- Monitoring is required to detect:
 - high traffic smuggling routes
 - shifting patterns of smuggling/immigration
 - tunneling activity

- Automated preprecessing techniques enable detailed change detection
 - manual
 - visual review
 - multitemporal color composite
 - semi-automated
 - Feature Analyst
 - Definiens
 - Custom raster processing

Questions?